Football Match Outcome Prediction by Applying Three Machine Learning Algorithms
نویسندگان
چکیده
منابع مشابه
Dutch football prediction using machine learning classifiers
Sports betting is becoming more popular every year and more people are betting now than ever. With the growth of the betting market comes the growth of research done on match prediction. Research done in the 1950s has been the basis for match predictions up until the 1980s. Since then prediction techniques have shifted from distribution prediction towards a more modern data mining predicting. U...
متن کاملApplying Machine Learning Algorithms in Software Development
Machine learning deals with the issue of how to build programs that improve their performance at some task through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. They are particularly useful for (a) poorly understood problem domains where little knowledge exists for the humans to develop effective algorithms; (b) domains w...
متن کاملThe Process of Applying Machine Learning Algorithms
In this paper we present a view of the overall process of application development for real-world classiication and regression problems. Speciically, we identify, categorize and discuss the various problem-speciic factors that innuence this process.
متن کاملPrediction of Outcome in the Vegetative State by Machine Learning Algorithms: A Model for Clinicians?
Purpose of this study was to compare different Machine Learning classifiers (C4.5, Support Vector Machine, Naive Bayes, K-NN) in the early prediction of outcome of the subjects in vegetative state due to traumatic brain injury. Accuracy proved acceptable for all compared methods (AUC > 0.8), but sensitivity and specificity varied considerably and only some classifiers (in particular, Support Ve...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Emerging Trends in Engineering Research
سال: 2020
ISSN: 2347-3983
DOI: 10.30534/ijeter/2020/1181.12020